
J. Adv. Model. Earth Syst., Vol. 2, Art. #7, 13 pp.

Applicationof theConcepts of Rossby Length andRossby
Depth to Tropical Cyclone Dynamics

Wayne H. Schubert and Brian D. McNoldy

Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA

Manuscript submitted 19 July 2010; in final form 21 September 2010

�is paper examines the usefulness of the complementary concepts of Rossby length and Rossby depth. �ese
concepts are discussed in the context of idealized analytical solutions of the transverse circulation equation that
arises in the balanced vortex model of tropical cyclones. When its coe�cients can be considered as constants,
this elliptic partial di�erential equation for the transverse circulation is solved in three di�erent ways: (i) First
perform a vertical transform to obtain a radial structure equation, from which arises the concept of a spec-
trumof Rossby lengths; (ii) First perform a radial transform to obtain a vertical structure equation, fromwhich
arises the concept of a spectrum of Rossby depths; (iii) First solve the elliptic PDE directly, without regard to
boundary conditions, and then enforce the boundary conditions using the method of image circulations. For
weak vortices, Rossby lengths are large and Rossby depths are small, so that the secondary circulation is hori-
zontally elongated and vertically compressed. For strong vortices, Rossby lengths are small and Rossby depths
are large, so that the secondary circulation is more vertically elongated and so horizontally compressed that
some of the eyewall updra� can return as subsidence in the eye. For strong vortices, the secondary circulation
associated with eyewall diabatic heating can be signi�cantly suppressed by the large inertial stability in the in-
terior of the vortex.�e large variations of Rossby depth with vortex strength also have important implications
concerning how far Ekman pumping can penetrate vertically; only strong vortices have large enough Rossby
depths to allow Ekman pumping to penetrate deep into the troposphere.
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1. Introduction

Figure 1 shows an AMSR-E 89 GHz microwave image of the
precipitation structure of Typhoon Choi-Wan when it was lo-
cated approximately 450 km north of Guam and had a nearly-
closed concentric eyewall structure. At this time (0353 UTC
on 15 September 2009), CloudSat’s 94 GHz Cloud Pro�l-
ing Radar had a fortuitous pass directly over the 65 m s−1
storm. �e CloudSat ground track is indicated by the thin red
line. Figure 2 shows the CloudSat north-south vertical cross-
section of radar re�ectivity, with north to the right. In the
top panel, the horizontal scale is compressed by a factor of 6.7
to exaggerate the vertical structure. �e inner eyewall is very
narrow and slopes outward between radii of 10 and 25 km,
while the outer, nearly concentric secondary eyewall is much
wider, as indicated on the north side, for example, by the high
radar re�ectivity values (red) penetrating above z = 10 km be-
tween radii of 80 and 130 km. In the bottom panel, only the
region inside a radius of 50 km is shown, but the aspect ratio is
one-to-one, clearly revealing the approximate 45○ baroclinic
tilt of the eyewall updra� and the upper level cloud overhang
at the outer edge of the eye.

Vortices such as Typhoon Choi-Wan tend to be balanced
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in the sense that they are continuously evolving from one gra-
dient balanced state to another, which implies that the trans-
verse circulation is determined by the solution of a second or-
der partial di�erential equation in the (r, z)-plane. Accord-
ing to this “transverse circulation equation," �rst derived by
Eliassen (1952), the streamfunction for the radial and vertical
motion is determined by the radial derivative of the diabatic
heating, the vertical derivative of the frictional torque, and
the three variable coe�cients A, B,C, which are the static sta-
bility, the baroclinity, and the inertial stability. Although so-
lutions of the transverse circulation equation generally yield
radial and vertical velocities that are much weaker than the
azimuthal velocity, the radial and vertical directions are the
directions of large gradients, so the relatively weak transverse
circulation is crucial for vortex evolution. In his classic 1952
paper, Eliassen presented the principal part of the Green’s
function solutions of the constant coe�cient version of the
transverse circulation equation for the case in which ∂Q/∂r
is localized and for the case in which the diabatic heating Q
itself is localized in the (r, z)-plane. �ese Green’s function
solutions clearly illustrate how the strength and shape of the
transverse circulation depend on the coe�cients A, B,C.
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2 Schubert and McNoldy

Figure 1. This 89 GHzmicrowave image fromAMSR-E shows the
precipitation structure of Typhoon Choi-Wan at the time of the
CloudSat overpass shown in Fig. 2. The CloudSat ground track is
indicated by the red line. The warmer colors in the plot indicate
more intense convection. The spatial resolution of AMSR-E’s 89
GHz channel is 5.4 km. The + marks are every 1 degree of longi-
tude and latitude, with the south edge at 14N and the west edge
at 142E. Image courtesy of NRL Monterey.

In the present paper we consider idealized vortex struc-
tures and idealized vertical structures of Q that allow the
transverse circulation equation to be solved analytically via
three di�erent methods. �ese simple theoretical arguments
illustrate the usefulness of the complementary concepts of
Rossby length (also sometimes referred to as the “Rossby ra-
dius of deformation") and Rossby depth, and thereby elabo-
rate on ideas discussed in the extensive literature on applica-
tions of the balanced vortex model to tropical cyclones (e.g.,
Ooyama 1969, Sundqvist 1970a,b, Smith 1981, Shapiro and
Willoughby 1982, Schubert and Hack 1982, Hack and Schu-
bert 1986, Nolan et al. 2007, Vigh and Schubert 2009, Pender-
grass and Willoughby 2009, and Willoughby 2009).

�e paper is organized in the following way. In Section 2,
the balanced vortex model and the associated transverse cir-
culation equation are presented. Section 3 discusses the so-
lution of the transverse circulation equation using a method
in which the partial di�erential equation is �rst transformed
in the vertical to obtain a set of ordinary di�erential equations
for the radial structure of the various verticalmodes.�e con-
cept of a spectrum of Rossby lengths naturally arises from this
approach. Section 4 examines the same elliptic problem of
Section 3, but using a di�erent mathematical technique. �e
partial di�erential equation for the transverse circulation is
�rst transformed in the radial direction, yielding a set of or-
dinary di�erential equations for the vertical structure of the

various radial modes. �e concept of a spectrum of Rossby
depths naturally arises from this approach. �e methods of
Sections 3 and 4 are complementary in the sense that they
yield two di�erent mathematical representations (and two
complementary physical interpretations) of the same trans-
verse circulation. �ese two analytical solutions of the trans-
verse circulation equation aid in understanding how the gen-
eral features of the transverse circulation change as a vortex
intensi�es and the inertial stability C becomes very large in
the inner region of the vortex. �e general rule that vortex in-
tensi�cation leads to decreasing Rossby lengths and increas-
ing Rossby depths also aids in understanding the changing
in�uence of the boundary conditions on the overall circu-
lation. Section 5 examines a third approach to the solution
of the transverse circulation equation. �is third approach,
more in the spirit of Green’s function methods, has the ad-
vantage that baroclinic e�ects are more easily included. �e
results obtained with this approach indicate that baroclinic
e�ects play a minor role in determining the strength of the
transverse circulation, but play amajor role in determining its
shape, especially the large outward tilt of the eyewall seen in
storms such as TyphoonChoi-Wan. As discussed in Section 6,
the concepts of Rossby length and Rossby depth can also aid
in understanding the upward penetration of Ekman pump-
ing, which appears to be quite sensitive to vortex strength.
�is indicates that the role of Ekman pumping in forcing deep
convection increases as a vortex intensi�es. Some concluding
remarks about vortex preconditioning are presented in Sec-
tion 7.

2. Balanced vortex model

We consider inviscid, axisymmetric, quasi-static, gradient-
balanced motions of a strati�ed, compressible atmosphere on
an f -plane. As the vertical coordinatewe use z = (cpθ0/g)[1−
(p/p0)κ], where p0 = 1000 hPa and θ0 = 300 K are constant
reference values of pressure and potential temperature. �e
governing equations for the balanced vortex model are

( f + v
r
) v = ∂ϕ

∂r
, (2.1)

∂v
∂t
+ u ( f + ∂(rv)

r∂r
) +w ∂v

∂z
= 0, (2.2)

∂ϕ
∂z
=

g
θ0

θ , (2.3)

∂(ru)
r∂r

+

∂(ρw)
ρ∂z

= 0, (2.4)

∂θ
∂t
+ u

∂θ
∂r
+w

∂θ
∂z
=
Q
Π
, (2.5)

where u and v are the radial and azimuthal components of ve-
locity, w is the ‘vertical velocity’, ϕ is the geopotential, f is the
constant Coriolis parameter, ρ(z) = ρ0[1− (gz/cpθ0)](1−κ)/κ
is the pseudodensity, ρ0 = p0/(Rθ0) is the constant reference
density, Π = cp(p/p0)κ is the Exner function, and Q is the
diabatic heating.
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Application of the concepts of Rossby length and Rossby depth 3

Figure 2. CloudSat’s 94 GHz Cloud Profiling Radar pass directly over Typhoon Choi-Wan on 15 September 2009 at 0353 UTC. This
figure shows a north-south vertical cross-section of radar reflectivity for the 65 m s−1 storm (north is to the right) when it was located
approximately 450 km north of Guam. In the top panel, the horizontal scale is compressed by a factor of 6.7 to exaggerate the vertical
structure. In the bottom panel, only the region inside a radius of 50 km is shown (which excludes the secondary eyewall), but the aspect
ratio is one-to-one, so features are presented as they would appear in nature. Reflectivity values less than −20 dBZ have been removed
for clarity. The cross-track horizontal resolution of CloudSat is 1.4 km. Radar data are courtesy of the NASA CloudSat Project.

Multiplying the azimuthal wind equation (2.2) by ( f +
2v/r) and the thermodynamic equation (2.5) by (g/θ0), and
then making use of the gradient wind equation (2.1) and the
hydrostatic equation (2.3), we obtain

∂ϕt

∂r
− Bρw + Cρu = 0, (2.6)

∂ϕt

∂z
+ Aρw − Bρu = g

θ0
θ̇ , (2.7)

where ϕt = ∂ϕ/∂t is the geopotential tendency, θ̇ = Q/Π, and
where the static stability A, the baroclinity B, and the inertial
stability C are given by

ρA = g
θ0

∂θ
∂z

,

ρB = − g
θ0

∂θ
∂r
= −( f + 2v

r
) ∂v
∂z
= −

∂m2

r3∂z
,

ρC = ( f + 2v
r
)( f + ∂(rv)

r∂r
) = ∂m2

r3∂r
.

(2.8)

Note that B can be expressed in terms of θ or v because of
thermal wind balance, and that B and C can also be con-
cisely expressed in terms of the absolute angular momentum
m = rv + 1

2 f r
2. We can now regard (2.4), (2.6), and (2.7) as

a system in ϕt , u,w. One way of proceeding from this system
is to make use of (2.4) to express the transverse circulation
(u,w) in terms of the streamfunction ψ by

ρu = −∂ψ
∂z

and ρw = ∂(rψ)
r∂r

. (2.9)

Note that we have rather loosely used the term ‘streamfunc-
tion’ for ψ. More precisely, the streamfunction for the trans-
verse mass �ux is rψ, not ψ. We have chosen not to absorb
the r factor into the de�nition of ψ because keeping the r
factor separate is mathematically convenient in deriving the
modi�ed Bessel equation (3.6) and in using the Hankel trans-
form pair (4.1) and (4.2). We now eliminate ϕt by taking
(∂/∂r)(2.7) − (∂/∂z)(2.6) to obtain the transverse circula-
tion equation given in the top two lines of (2.10). Assuming
thatw vanishes at the bottom (z = 0) and top (z = zT) bound-
aries, that u vanishes at r = 0, and that ru → 0 as r →∞, the
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resulting elliptic problem for the transverse circulation can be
concisely stated as

∂
∂r
(A∂(rψ)

r∂r
+ B

∂ψ
∂z
)

+

∂
∂z
(B ∂(rψ)

r∂r
+ C

∂ψ
∂z
) = g

θ0
∂θ̇
∂r

,

ψ(0, z) = 0, ψ(r, 0) = 0, ψ(r, zT) = 0,
rψ(r, z)→ 0 as r →∞.

(2.10)

A�er solving (2.10) forψ, we can compute u andw from (2.9),
and then predict a new v-�eld from (2.2) or a new θ-�eld from
(2.5), the two predictions being consistent with the thermal
wind equation given in the middle entry of (2.8). Note that
the problem (2.10) is derived from inviscid dynamics. In Sec-
tion 6 we shall modify the lower boundary condition in (2.10)
in order to examine the upward penetration of Ekman pump-
ing.

From (2.8) it can easily be shown that

−

B
A
=
∂θ/∂r
∂θ/∂z = (

dz
dr
)
θ
, (2.11)

which is the slope of the z-surface with respect to the θ-
surface, and that

−

B
C
=
∂m/∂z
∂m/∂r = (

dr
dz
)
m
, (2.12)

which is the slope of the r-surface with respect to the abso-
lute angular momemtum surface (m = rv + 1

2 f r
2). When

B = 0, the θ-surfaces are parallel to the z-surfaces and the
m-surfaces are parallel to the r-surfaces (i.e., vertical). As we
shall see, the ratio A/C determines, in large part, the e�ective
Rossby length and the e�ective Rossby depth, both of which
can vary over a wide range in tropical cyclones.

In Sections 3 and 4 we consider the response to a θ̇(r, z)
distribution that corresponds to an annular volume of eyewall
diabatic heating, i.e., θ̇(r, z) is assumed to vanish everywhere
except in the radial range r1 < r < r2, where r1 and r2 are
constants. Within this annular volume the diabatic heating
is assumed to be independent of r and to have the vertical
dependence Θ̇(z). �us, θ̇(r, z) is piecewise constant in the
radial direction, with the mathematical form

θ̇(r, z) =
⎧⎪⎪⎨⎪⎪⎩
Θ̇(z) r1 < r < r2 ,
0 otherwise.

(2.13)

With these assumptions, the right hand side of (2.10) vanishes
everywhere except along the inside and outside edges of the
eyewall, where ∣∂θ̇(r, z)/∂r∣ becomes in�nitely large over an
in�nitesimally thin layer. �us, the total secondary circula-
tion will consist of a chain of counterclockwise turning gyres
on the inside edge of the eyewall and a chain of clockwise

turning gyres on the outside edge of the eyewall. For the ver-
tical dependence of the diabatic heating we choose

Θ̇(z) = Θ̇max

⎧⎪⎪⎨⎪⎪⎩
sin ( π(z−z1)z2−z1

) z1 ≤ z ≤ z2 ,
0 otherwise,

(2.14)

where z1, z2, and Θ̇max are constants.

3. Arriving at ψ via the concept of Rossby length

�e problem (2.10) is too complicated to solve analytically in
the general case when the coe�cients A, B, and C vary with
r and z in complicated ways. However, we can begin to gain
physical insight into the solution of (2.10) by considering the
case where B = 0 (the case B ≠ 0 is deferred until Section 5),
and A and C are constant. �is assumption of constant coef-
�cients is useful for gaining physical understanding through
analytic solutions; it is more justi�able for the static stability
A than the inertial stability C, which tends to be greatly en-
hanced in the core of intense hurricanes.

In the case of constant coe�cients, there are several tech-
niques that can be used to solve (2.10): (i) A vertical sine trans-
form followed by solution of a radial structure equation; (ii)
A radial Hankel transform followed by solution of a vertical
structure equation; (iii) �e method of direct solution, ig-
noring boundary conditions, followed by the method of im-
ages to satisfy boundary conditions. Method (i), which is dis-
cussed in this section, leads naturally to physical interpreta-
tions based on Rossby length. In contrast, method (ii), which
is discussed in Section 4, leads naturally to physical interpre-
tations based on Rossby depth. Method (iii), which is dis-
cussed in Section 5, has the advantage of yielding physical
understanding through both the Rossby length and Rossby
depth, if one restricts the discussion to simple solutions that
are valid away from the axis of symmetry. Since these simple
solutions do not satisfy the boundary conditions, the method
of images needs to be introduced to understand the role of
boundary conditions, which can o�en be an important part
of the complete transverse circulation problem.

When A and C are constant and B = 0, (2.10) reduces to

A
∂
∂r
(∂(rψ)

r∂r
) + C ∂2ψ

∂z2
=

g
θ0

∂θ̇
∂r

. (3.1)

Noting the top and bottom boundary conditions for ψ(r, z),
we seek solutions of (3.1) via the Fourier sine transform pair,
i.e.,

ψ(r, z) =
∞

∑
n=1

ψn(r) sin(nπzzT
) , (3.2)

ψn(r) = 2
zT ∫ zT

0
ψ(r, z) sin(nπz

zT
) dz, (3.3)

where the Fourier coe�cients ψn(r) give the radial structure
of each vertical mode n. A similar transform pair exists for
θ̇(r, z) and its Fourier coe�cients θ̇n(r). To take the Fourier
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sine transformof (3.1), we �rstmultiply it by sin (nπz/zT) and
integrate over z from0 to zT .�e integral originating from the
second term in (3.1) is then integrated by parts twice, making
use of the bottom and top boundary conditions on ψ(r, z).
�is procedure results in the radial structure problem

d
dr
(d(rψn)

rdr
) − µ2nψn =

g
θ0A

d θ̇n
dr

,

ψn(0) = 0, rψn(r)→ 0 as r →∞,

(3.4)

where µn , the inverse Rossby length, is de�ned by

µn = (CA)
1/2 nπ

zT
=

nπ
ΓzT

. (3.5)

Because of (2.13), the right hand side of (3.4) vanishes for
r ≠ r1 , r2, yielding the modi�ed Bessel equation

r2
d2ψn

dr2
+ r

dψn

dr
− (µ2nr2 + 1)ψn = 0 for r ≠ r1 , r2 . (3.6)

�e radial structure functions ψn(r) must be continuous
across r = r1 and r = r2, but the radial derivative of ψn(r)
is discontinuous, with the magnitude of the discontinuity de-
termined by integration of (3.4) across very narrow radial in-
tervals centered at r = r1 and r = r2. In this way we obtain the
matching conditions

[ψn]
r+1

r−1

= 0, [d(rψn)
rdr

]
r+1

r−1

=
gΘ̇n

θ0A
,

[ψn]
r+2

r−2

= 0, [d(rψn)
rdr

]
r+2

r−2

= −
gΘ̇n

θ0A
,

(3.7)

where the minus and plus superscripts denote points just to
the le� and right, and where Θ̇n is given by

Θ̇n =
2
zT ∫ zT

0
Θ̇(z) sin(nπz

zT
) dz. (3.8)

Using (2.14) in (3.8) and evaluating the resulting integral, we
can obtain a computationally useful formula for Θ̇n . �e re-
sult is given below in (3.12).

Since it is a solution of (3.6) and (3.7), the nth radial
structure function ψn(r) can be written as the superposi-
tion of two radial structure functions, i.e., ψn(r) = ψ(1)n (r) +
ψ(2)n (r), where ψ(1)n (r) satis�es the homogeneous equation
(3.6) for r ≠ r1 and satis�es the matching conditions at
r = r1, and where ψ(2)n (r) satis�es the homogeneous equa-
tion (3.6) for r ≠ r2 and satis�es the matching conditions at
r = r2. �e function ψ(1)n (r) is constructed from a combina-
tion of the order one modi�ed Bessel functions I1(µnr) and
K1(µnr). Because of the lateral boundary conditions given
in (3.4), only the I1(µnr) solution is valid for 0 ≤ r ≤ r1
and only the K1(µnr) solution is valid for r1 ≤ r < ∞.
�e jump conditions at r = r1 can be enforced with the

aid of the derivative relations d[rI1(µnr)]/rdr = µn I0(µnr)
and d[rK1(µnr)]/rdr = −µnK0(µnr), and the Wronskian
I0(µnr)K1(µnr) + K0(µnr)I1(µnr) = 1/(µnr). �e result is
given below in (3.10). �e function ψ(2)n (r) is constructed in
a similar fashion, with the result given below in (3.11).

To summarize, for the case inwhichA andC are constants
and B = 0, the solution of the transverse circulation problem
(2.10) is

ψ(r, z) =
∞

∑
n=1
[ψ(1)n (r) + ψ(2)n (r)] sin(nπzzT

) , (3.9)

where

ψ(1)n (r) = − gΘ̇n

θ0
r1
A

⎧⎪⎪⎨⎪⎪⎩
K1(µnr1)I1(µnr) if 0 ≤ r ≤ r1
I1(µnr1)K1(µnr) if r1 ≤ r <∞,

(3.10)

ψ(2)n (r) = gΘ̇n

θ0
r2
A

⎧⎪⎪⎨⎪⎪⎩
K1(µnr2)I1(µnr) if 0 ≤ r ≤ r2
I1(µnr2)K1(µnr) if r2 ≤ r <∞,

(3.11)

Θ̇n =
2Θ̇max(z2 − z1)zT

π [z2T − n2(z2 − z1)2]

⋅ [sin(nπz1
zT
) + sin(nπz2

zT
)] , (3.12)

with Γ = (A/C)1/2 measuring the relative magnitudes of
static stability and inertial stability. To compute ψ(r, z)
from (3.9)–(3.12) we must �rst specify the parameters
r1 , r2 , z1 , z2 , zT , Θ̇max ,A,C. For the calculations presented
herewe have chosen r1 = 30 km, r2 = 50 km, z1 = 2 km, z2 = 10
km, zT = 5π km, Θ̇max = 100 K day−1, ρ0A = 1.64 × 10−4 s−2
(see Fig. 1 of Schubert and Hack 1983), and the four values of
C that result in (A/C)1/2 = Γ = 256, 64, 16, 4. �e �rst case,
Γ = 256, is typical of a resting atmosphere because, in that
case, (ρ0C)1/2 = (1/256)(ρ0A)1/2 ≈ 5.0 × 10−5s−1 ≈ f (20N).
�e other three cases, Γ = 64, 16, 4, correspond to the pro-
gressively more intense vortices (ρ0C)1/2 ≈ 4 f , 16 f , 64 f .

Figure 3 shows isolines of rψ(r, z) for the four cases Γ =
256, 64, 16, 4. �e spectrum of Rossby lengths µ−1n for n =
1, 2, . . . , 10 is shown in Table 1 for these four cases. For the
Γ = 256 case, the spectrumofRossby lengths ranges from 1280
km for n = 1 to 128 km for n = 10. Since these Rossby lengths
are all greater than r1 and r2, the secondary circulation is un-
der strong control by the symmetry condition at r = 0. �e
result is that the inner cell is almost completely suppressed
(i.e., very weak eye subsidence) while the lower tropospheric
radial in�ow and upper tropospheric radial out�ow extend
all the way to the inner edge of the eyewall. As we shall see
in Section 4, the concept of Rossby depth is complementary
to that of Rossby length, such that Rossby depths are small
when Rossby lengths are large. In fact, for the Γ = 256 case,
the Rossby depths are so small that the secondary circulation
is under very weak control by the bottom and top boundary
conditions.
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6 Schubert and McNoldy

Figure 3. Line contours are isolines of rψ forced solely by diabatic heating. The sense of the circulation is counterclockwise for the
dashed lines and clockwise for the solid lines. The four panels are created for z1 = 2 km, z2 = 10 km, r1 = 30 km, r2 = 50 km, Θ̇max = 100 K
day−1 , and Γ = 256, 64, 16, 4. The black rectangle indicates the region of diabatic heating, as given by (2.13) and (2.14). Colored contours
indicate ω, the vertical pressure velocity, which is related to w by ω = −gρw, with ρ denoting the pseudodensity defined in Section 2.
Warm colors are upward, cool colors are downward, and the contour interval is 5 hPa hr−1 .

As a tropical cyclone intensi�es, the spectrum of Rossby
lengths shi�s to lower values while the spectrum of Rossby
depths shi�s to higher values. In the process, the transverse
circulation becomes less controlled by the r = 0 boundary
condition but increasingly controlled by the bottom and top
boundary conditions. When Γ = 4 (lower right panel of
Fig. 3), the total upward mass �ux in the eyewall has been re-
duced to less than half of its value in the Γ = 256 case. Some
of this reduction can be attributed to the increased in�uence
of the bottom and top boundary conditions, but most of this
reduction in upward mass �ux is due to the strong inertial
sti�ening in the Γ = 4 case. �is will be more clearly seen in
Section 5, where themethod of images separates the in�uence
of the boundary conditions from the in�uence of the interior
sti�ening of the vortex.

�e results of Fig. 3 suggest that eye formation can be
viewed as a two-stage process. In the �rst stage, deep con-
vection and the associated diabatic heating become con�ned
to an annular ring, probably due to the fact that Ekman

pumping maximizes away from the axis of the vortex, as dis-
cussed by Ooyama (1968, 1969), Eliassen (1971), Eliassen and
Lystad (1977), Yamasaki (1977, his Fig. 9b), and Montgomery
et al. (2001). However, even with diabatic heating con�ned to
an annular ring, a vortex with Γ = 64 does not produce much
subsidence inside r = 30 km (upper right panel of Fig. 3).
�us, the radar re�ectivity pattern corresponding to the up-
per right panel would show an echo-free eye and an annu-
lar ring of strong echo, but an aircra� radial leg would not
show an eye with large dewpoint depressions. As the vortex
becomes stronger (bottom two panels of Fig. 3), almost the
entire spectrum of Rossby lengths (right two columns of Ta-
ble 1) shrink to less than 30 km. Subsidence then develops
in the core, and, except for the very lowest troposphere, we
would expect very large dewpoint depressions to develop in
the core. In fact, if the vortex is strong enough, subsidence
becomes concentrated near the outer edge of the eye, so we
can expect the occurrence of the related phenomena of an eye
moat, a hub cloud, and a warm ring thermal structure (Schu-
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Application of the concepts of Rossby length and Rossby depth 7

Table 1. The spectrum of Rossby lengths µ−1n = ΓzT/(nπ) for
the four values of Γ listed in the top row and for the ten values
of n listed in the left column. The Rossby lengths are given in
kilometers (rounded to the nearest tenth of a kilometer) and have
been computed using zT =5π km. The case Γ =256 corresponds
to a weak vortex, with Rossby lengths ranging from 128 km to
1280 km. The case Γ =4 corresponds to a strong vortex, with
Rossby lengths ranging from 2 km to 20 km.

Rossby Length (km)
n Γ = 256 Γ = 64 Γ = 16 Γ = 4
1 1280.0 320.0 80.0 20.0
2 640.0 160.0 40.0 10.0
3 426.7 106.7 26.7 6.7
4 320.0 80.0 20.0 5.0
5 256.0 64.0 16.0 4.0
6 213.3 53.3 13.3 3.3
7 182.9 45.7 11.4 2.9
8 160.0 40.0 10.0 2.5
9 142.2 35.6 8.9 2.2
10 128.0 32.0 8.0 2.0

bert et al. 2007). In addition, upper level radial in�ow such
as that shown in the lower right panel of Fig. 3 will tend to
produce an upper level cloud overhang such as that observed
in the CloudSat image shown in the bottom panel of Fig. 2.
In summary, the �rst stage of eye formation involves the de-
velopment of an annular ring of deep convection with little
subsidence in the core, while the second stage involves the de-
velopment of strong subsidence and desiccation in the core.

4. Arriving at ψ via the concept of Rossby depth

In Section 3 theψ(r, z) �eldwas represented via (3.2) in terms
of oscillatory functions of z, each of which had a coe�cient
ψn(r) that was evanescent in r. In this section ψ(r, z) is rep-
resented via (4.1) in terms of oscillatory functions of r, each
of which has a coe�cient ψ̂(k, z) that is evanescent in z, as
given below in (4.6). �ese two approaches are complemen-
tary, each yielding its own type of physical insight. To solve

(3.1) via the second approach, we introduce the Hankel trans-
form pair

ψ(r, z) = ∫ ∞0 ψ̂(k, z)J1(kr) k dk, (4.1)

ψ̂(k, z) = ∫ ∞0 ψ(r, z)J1(kr) r dr, (4.2)

where J1(kr) is the order one Bessel function and k is the ra-
dial wavenumber. A similar transform pair exists for θ̇(r, z)
and ˆ̇θ(k, z). To take the Hankel transform of (3.1), we �rst
multiply it by rJ1(kr) and integrate over all r. �e integral
originating from the �rst term in (3.1) is then integrated by
parts twice, making use of the lateral boundary conditions on
ψ(r, z) and making use of the Bessel di�erential equation

d
dr
(d[rJ1(kr)]

rdr
) = −k2 J1(kr). (4.3)

�is procedure results in the vertical structure problem

d2ψ̂(k, z)
dz2

− γ2(k)ψ̂(k, z)

=
g

θ0C
[r1 J1(kr1) − r2 J1(kr2)] Θ̇(z),

ψ̂(k, 0) = 0, ψ̂(k, zT) = 0,

(4.4)

where γ(k), the inverse of the Rossby depth, is de�ned by

γ(k) = (A
C
)
1/2

k = Γk. (4.5)

Note that (4.5) is the analogue of (3.5), with γ−1(k) =
(C/A)1/2k−1 giving the spectrum of Rossby depths as a
function of the horizontal wavenumber k, and µ−1n =

(A/C)1/2(zT/π)n−1 giving the spectrum of Rossby lengths as
a function of the vertical wavenumber n.

Because Θ̇(z) is given by (2.14), we must solve the homo-
geneous version of (4.4) in the two regions 0 ≤ z < z1 and
z2 < z < zT , the inhomogeneous version of (4.4) in the re-
gion z1 < z < z2, and then match the solutions in such a way
that ψ̂(k, z) and dψ̂(k, z)/dz are continuous across z = z1 and
z = z2. �e result is

ψ̂(k, z) = − gπΘ̇max [r1 J1(kr1) − r2 J1(kr2)]
θ0Cγ(z2 − z1) [γ2 + ( π

z2−z1
)2] 2 (1 − e−2γzT )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(1 − e−2γz1) e−γ(z−z1) + (1 − e−2γz2) e−γ(z−z2)] (1 − e−2γ(zT−z)) if z2 ≤ z ≤ zT ,

(1 − e−2γz1) e−γ(z−z1) (1 − e−2γ(zT−z)) + (1 − e−2γz) e−γ(z2−z) (1 − e−2γ(zT−z2))
+ 2γ ( z2−z1π ) (1 − e−2γzT) sin ( π(z−z1)z2−z1

) if z1 ≤ z ≤ z2 ,

[(1 − e−2γ(zT−z1)) e−γ(z1−z) + (1 − e−2γ(zT−z2)) e−γ(z2−z)] (1 − e−2γz) if 0 ≤ z ≤ z1 .

(4.6)
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8 Schubert and McNoldy

Table 2. The spectrum of Rossby depths γ−1(k) = 1/(Γk) for
the four values of Γ listed in the top row and for the ten values
of 1/k listed in the left column. The Rossby depths are given
in kilometers, rounded to the nearest meter. The case Γ =256
corresponds to a weak vortex, with Rossby depths ranging from
31m to 16 km. The case Γ =4 corresponds to a strong vortex, with
Rossby depths ranging from 2 km to 1024 km.

Rossby Depth (km)
1/k (km) Γ = 256 Γ = 64 Γ = 16 Γ = 4
4096 16 64 256 1024
2048 8 32 128 512
1024 4 16 64 256
512 2 8 32 128
256 1 4 16 64
128 0.5 2 8 32
64 0.25 1 4 16
32 0.125 0.5 2 8
16 0.063 0.25 1 4
8 0.031 0.125 0.5 2

To summarize, for the case in which A and C are constants
and B = 0, the solution of the transverse circulation prob-
lem (2.10) is (4.1), with ψ̂(k, z) given by (4.6). As a check
on our solutions we have computed ψ(r, z) from (4.1) and
(4.6) and compared the results with ψ(r, z) computed from
(3.9)–(3.12). �e results are identical since they are simply
two di�erent mathematical representations of the unique so-
lution to (2.10). �e solution method described in Section 3
begins with a vertical transform and then solves the radial
structure equation (3.4), which contains the Rossby length
µ−1n of each vertical wavenumber n. In contrast, the solution
method described here in Section 4 begins with a horizon-
tal transform and then solves the vertical structure equation
(4.4), which contains the Rossby depth γ−1(k) of each hor-
izontal wavenumber k. Since the Rossby length µ−1n is pro-
portional to Γ and the Rossby depth γ−1(k) is proportional to
1/Γ, these two concepts are complementary. Both are useful
in understanding tropical cyclone development.

Table 2 gives the spectrum of Rossby depths for the four
values of Γ used in Fig. 3. For the weak vortex case (Γ = 256),
the spectrum of Rossby depths ranges from 1000 m for k−1 =
256 km to 31 m for k−1 = 8 km, which explains why the sec-
ondary circulation does not extend above or below the heat
source in the upper le� panel of Fig. 3. In the strong vortex
case (Γ = 4) the spectrumof Rossby depths shi�s to larger val-
ues, so the secondary circulation extends above and below the
heat source, although its extent below the source is limited by
the lower boundary condition. In the top two panels of Fig. 3
the Rossby depths tend to be smaller than z1 and zT−z2, so the
secondary circulation is only weakly controlled by the bottom
and top boundary conditions.

We note in passing that the transform methods used
in this section and the previous section depend on the as-

sumption of constant coe�cients in the transverse circula-
tion equation. �is assumption is probably acceptable for A,
but is less justi�able for C. As a hurricane intensi�es, the in-
ertial stability coe�cient C becomes very large in the hurri-
cane core, but remains relatively unchanged in the far-�eld.
�us, the strong vortex case shown in the bottom right panel
of Fig. 3 has unrealistically large C at the outer radii. With a
more realistic, radially varying C, the outer part of the cross-
section in the lower right panel would lookmore like the outer
part of the lower le� panel. �us, the idealized analytic solu-
tions presented here provide only an approximate quantita-
tive guide to the complementary concepts of the spectrum of
Rossby lengths and the spectrum of Rossby depths. In partic-
ular, the solutions help us understand the dynamical conse-
quences of the enormous variability of C in hurricanes.

5. Arriving at ψ via a Green’s function method

A third route (see Eliassen 1952, 1959, Shapiro andWilloughby
1982) to understanding the solutions of the elliptic problem
(2.10) is through direct solution of the second order equation,
ignoring the boundary conditions at r = 0 and z = 0, zT . We
again assume that A and C are constants, but now allow for
nonzero B. Later in this section we shall enforce the lower
boundary condition through the addition of an “image circu-
lation" centered below the earth’s surface. One advantage of
this approach is that we obtain a better understanding of the
role of B. A second advantage is that we obtain solutions with
andwithout boundary conditions, so the role of the boundary
conditions is clari�ed. Webegin by noting that, when r is large
enough that curvature e�ects are negligible, (2.10) reduces to

A
∂2ψ
∂x2
+ 2B

∂2ψ
∂x∂z

+ C
∂2ψ
∂z2
=

g
θ0

∂θ̇
∂x

, (5.1)

where x = r − r0 is a cartesian coordinate with origin at
r = r0. We now transform to the skew coordinates (x̂ , ẑ),
which are de�ned by x̂ = (Cx − Bz)/D and ẑ = z, where
D = (AC − B2)1/2. Using (∂/∂x) = (C/D)(∂/∂x̂) and
(∂/∂z) = (∂/∂ẑ) − (B/D)(∂/∂x̂), (5.1) then transforms to

∂2ψ
∂x̂2
+

∂2ψ
∂ẑ2
=

g
θ0D

∂θ̇
∂x̂

. (5.2)

Consider a diabatic heating �eld given by

θ̇(x̂ , ẑ) =
⎧⎪⎪⎨⎪⎪⎩
θ̇0 if (ẑ − ẑ0)2/a2 + x̂2/b2 ≤ 1,
0 if (ẑ − ẑ0)2/a2 + x̂2/b2 > 1,

(5.3)

where the constant θ̇0 speci�es the uniform diabatic heating
within the elliptical patch whose center is at (x̂ , ẑ) = (0, ẑ0)
and whose shape is speci�ed by the constants a, b. Note that,
with diabatic heating of the form (5.3), the right hand side of
(5.2) vanishes everywhere except along the boundary of the
elliptical patch.
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Figure 4. Elliptic coordinates (ρ, φ), as defined in (5.4). Lines of
constant ρ (blue) are the ellipses and lines of constant φ (red) are
the hyperbolas. Both sets of curves have the same foci, located
at (x̂ , ẑ − ẑ0) = (0,±c) and indicated by the + symbols. Far from
the origin, lines of constant ρ are very nearly circles and lines of
constant φ are very nearly straight radials. The units on the axes
are in km, and only select values of ρ and φ are shown for clarity.

To derive the solution of (5.2), it is convenient to use the
elliptic coordinates (ρ, φ), which are related to the skew co-
ordinates by (ẑ − ẑ0) + ix̂ = c cosh(ρ + iφ), or equivalently,

x̂ = c sinh ρ sinφ, ẑ − ẑ0 = c cosh ρ cosφ, (5.4)

where c = (a2 − b2)1/2. From (5.4) it is easily shown that

x̂2

c2 sinh2 ρ
+

(ẑ − ẑ0)2
c2 cosh2 ρ

= 1, (5.5)

and
(ẑ − ẑ0)2
c2 cos2 φ

−

x̂2

c2 sin2 φ
= 1, (5.6)

so that the lines of constant ρ are ellipses and the lines of
constant φ are hyperbolas (see Fig. 4). �e complete fam-
ily of ellipses is generated by allowing the coordinate ρ to
vary over the range 0 ≤ ρ < ∞, while the complete fam-
ily of hyperbolas is generated by allowing the coordinate φ
to vary over the range 0 ≤ φ ≤ 2π. In particular, the el-
lipse (ẑ − ẑ0)2/a2 + x̂2/b2 = 1, which just encloses the re-
gion of nonzero diabatic heating, is speci�ed by ρ = ρ0 =
tanh−1(b/a) = 1

2 ln[(a + b)/(a − b)]. As ρ becomes very
large, cosh ρ ≈ sinh ρ ≈ 1

2 e
ρ , so that the lines of constant

ρ approach circles with radius 1
2 ce

ρ in the skew-coordinate
space, and the lines of constant φ approach the straight radi-
als φ = tan−1[x̂/(ẑ − ẑ0)].

Expressed in terms of the elliptic coordinates, the diabatic
heating (5.3) is

θ̇(ρ) =
⎧⎪⎪⎨⎪⎪⎩
θ̇0 if ρ ≤ ρ0 ,
0 if ρ > ρ0 ,

(5.7)

and the governing equation (5.2) is

∂2ψ
∂ρ2
+

∂2ψ
∂φ2 =

gc
θ0D

cosh ρ sinφ ∂θ̇
∂ρ

, (5.8)

where we have used (∂θ̇/∂φ) = 0, which follows from (5.7).
�e right hand side of (5.8) vanishes for ρ ≠ ρ0, so that to ob-
tain the streamfunction corresponding to the diabatic heating
(5.3) we must solve

∂2ψ
∂ρ2
+

∂2ψ
∂φ2 = 0 for ρ ≠ ρ0 , (5.9)

then enforce the far-�eld boundary condition, and �nally
match the solutions at ρ = ρ0 in such a way that ψ is con-
tinuous, but (∂ψ/∂ρ) has a discontinuity whose magnitude is
determined by integrating (5.8) over a very narrow interval of
ρ centered at ρ = ρ0. �us, the matching conditions are

[ψ]ρ+0ρ−0 = 0 [∂ψ
∂ρ
]
ρ+0

ρ−0

= −
gcθ̇0
θ0D

cosh ρ0 sinφ, (5.10)

where the minus and plus superscripts denote points just in-
side and just outside ρ0.

As is easily con�rmed by direct substitution, the solution
of (5.9) and (5.10) is

ψ(ρ, φ) = gcθ̇0
θ0D

cosh ρ0 sinφ
⎧⎪⎪⎨⎪⎪⎩
e−ρ0 sinh ρ if ρ ≤ ρ0 ,

e−ρ sinh ρ0 if ρ ≥ ρ0 .
(5.11)

Since the term in the second line of (5.11) decays exponen-
tially with ρ, the far-�eld boundary condition is satis�ed. �e
ψ(ρ, φ) �eld given by (5.11) is continuous at ρ = ρ0. Similarly,
we can show that ∂ψ/∂ρ satis�es the jump condition given in
(5.10).�us, (5.11) is the solution of (5.9) satisfying the desired
boundary and interface conditions.

Plots of ψ(x , z) can be obtained by choosing a regular
grid of (x , z) points, then �nding the corresponding values
of ρ(x , z), φ(x , z) from

ρ(x , z) + iφ(x , z) = cosh−1 (D(z − z0) + i(Cx − Bz)
D(a2 − b2)1/2 ) ,

(5.12)
and �nally using (5.11) to compute ψ(ρ(x , z), φ(x , z)). Iso-
lines of ψ, as determined from (5.11) and (5.12), are plotted in
Fig. 5 for the case a = 4 km, b = (C/D)10 km, ẑ0 = 6 km,
θ̇0 = 100 K day−1, and Γ = 4. �e top panel is for a barotropic
vortex (B = 0), so the updra� does not tilt with height. �e
bottom panel is for a baroclinic vortex with −B/C = 1, so that,
according to (2.12), the angular momentum surfaces have a
tilt of 45○. Within the heated region, the isolines of ψ tend to
follow the angular momentum surfaces, so the updra� tilt is
approximately 45○, the same as that for the inner eyewall of
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Figure 5. Isolines of ψ, as determined from (5.11), for the case
a = 4 km, b = (C/D)10 km, ẑ0 = 6 km, θ̇0 = 100 K day−1 , and Γ = 4.
The top panel is for a barotropic vortex (B = 0), while the bottom
panel is for a baroclinic vortex with −B/C = 1, in which case an
angular momentum surface in the eyewall has a slope of 45○.

Typhoon Choi-Wan, as shown in Fig. 2. According to (5.11),
the strength of the overturning circulation is inversely propor-
tional to D. Since the value of D is approximately 3% smaller
in the lower panel of Fig. 5, the overturning circulation in
the baroclinic vortex is only slightly stronger than that in the
barotropic vortex.�is result is typical for tropical cyclone sit-
uations and leads to the conclusion that the vortex baroclinity
is crucial for updra� tilt but has only a small e�ect on updra�
strength.

�eψ �elds displayed in Fig. 5, having been computed us-
ing (5.11), do not satisfy the lower boundary condition ψ = 0.
A solution of (5.8) that does satisfy the lower boundary con-
dition can be constructed by superposition of (5.11) and its
image, which is the ψ �eld associated with a negative heat
source centered below the earth’s surface at (x̂ , ẑ) = (0,−ẑ0).
�is image solution is easily computed from a modi�ed ver-
sion of (5.11), obtained by changing θ̇0 to −θ̇0 and ẑ0 to −ẑ0.
For Γ = 4 and B2/(AC) = 1/16, this image solution is shown
by the red lines in the top panel of Fig. 6, with the original
solution shown by the blue lines. �e superposition of these

two patterns, neither of which satis�es the boundary condi-
tion, results in the solution shown in the bottom panel, which
does satisfy both the governing equation (5.8) and the ψ = 0
boundary condition. An important feature of Fig. 6 is that the
red image solution does not penetrate very far into the inte-
rior, whichmeans that the enforcement of the lower boundary
condition only modi�es the solution in the lowest few kilo-
meters, causing the ψ contours to accommodate to the ψ = 0
condition at z = 0.

We are now in a position to answer the following ques-
tion. Why is the total upward mass �ux so much smaller in
the lower right panel of Fig. 3 (a strong vortex with Γ = 4)
than in the upper le� panel (a weak vortex with Γ = 256). Is
it due to (i) the large increase of inertial stability in the inte-
rior for the Γ = 4 case, or (ii) the larger in�uence of the upper
and lower boundary conditions when Rossby depths become
large in the Γ = 4 case? �e answer appears to be (i), with the

Figure 6. The isolines of ψ, as determined from (5.11), for the
case a = 4 km, b = (C/D)10 km, θ̇0 = 100 K day−1 , Γ = 4, and
B2/(AC) = 1/16. In the top panel, the elliptical region of heating
is shown in black, its associated streamfunction is shown in blue,
and the corresponding ficticious ‘image’ circulation is shown in
red. The bottom panel shows the sum of the two circulations,
which satisfies the lower boundary condition.
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boundary conditions exerting only weak control on the total
upward mass �ux. �is becomes obvious by noting that the
strength of the transverse circulation in the bottom panel of
Fig. 6 (lower boundary condition enforced) is nearly the same
as that in the bottom panel of Fig. 5 (lower boundary condi-
tion not enforced).

6. Upward penetration of Ekman pumping

So far we have neglected the e�ects of friction on the trans-
verse circulation. Although the direct e�ects of friction are
con�ned primarily to the lowest kilometer, the “inviscid inte-
rior" is indirectly a�ected by boundary layer friction through
the secondary circulation resulting from the Ekman pumping
at the top of the boundary layer. As discussed in this section,
the spatial structure of the frictionally driven interior circu-
lation depends on the vortex strength and can be understood
using the concept of a spectrum of Rossby depths. To un-
derstand how the upward penetration of Ekman pumping de-
pends on vortex strength, consider a modi�ed version of the
problem (2.10). Again assume that B = 0 and that A and C
are constants, but now assume that θ̇ = 0 and that a nonzero
streamfunction is speci�ed at the lower boundary z = zB , the
top of the Ekman layer. Assume the Ekman pumping at the
top of the boundary layer is given by

w(r, zB) = w0αr (1 − 1
3αr) e−αr , (6.1)

where the constantw0 is proportional to themagnitude of the
vertical velocity, and the constant α is related to the size of the
region of pumping. �is structure places zero vertical motion
at r = 0, an upward maximum at r = (5 −√13)/(2α), zero at
r = 3/α, maximum downward motion at r = (5+√13)/(2α),
and w → 0 as r → ∞. �e resulting elliptic problem for the
transverse circulation is

A
∂
∂r
(∂(rψ)

r∂r
) + C ∂2ψ

∂z2
= 0,

ψ(0, z) = 0, ψ(r, zT) = 0,
ψ(r, zB) = 1

3 ρBw0αr2e−αr ,

rψ(r, z)→ 0 as r →∞,

(6.2)

where ψ(r, zB) has been obtained by integration of (6.1). To
solve (6.2) we follow the Hankel transform procedure of Sec-
tion 4.�is procedure results in the vertical structure problem

d2ψ̂(k, z)
dz2

− γ2(k)ψ̂(k, z) = 0,

ψ̂(k, zT) = 0, ψ̂(k, zB) = ρBw0
αk(4α2

− k2)
(α2
+ k2)7/2 ,

(6.3)

where γ(k) is given in (4.5), and where ψ̂(k, zB) has been ob-
tained by substituting the expression for ψ(r, zB) into (4.2)
and evaluating the resulting integral using Gradshteyn and

Ryzhik (1994, page 733). �e solution of (6.3) is

ψ̂(k, z) = ( e
−γ(z−zB)

− e−γ(2zT−z−zB)

1 − e−2γ(zT−zB)
) ψ̂(k, zB). (6.4)

�e �nal solution for ψ(r, z) is obtained by substituting (6.4)
into (4.1) and numerically evaluating the resulting integral
over k. �e �nal solution for the vertical mass �ux ρw(r, z)
can be obtained in a similar fashion from

ρw(r, z) = ∫ ∞0 ψ̂(k, z)J0(kr) k2 dk, (6.5)

which follows from (2.9), (4.1), and the Bessel function
derivative relation

d[rJ1(kr)]
rdr

= kJ0(kr). (6.6)

Figure 7 shows isolines of rψ(r, z) for zB = 1 km, zT = 5π
km, α = 0.0465 km−1, and for the four cases Γ = 256, 64, 16, 4.
Also shown in Fig. 7 are colored contours, which indicate the
vertical pressure velocity ω = −gρw. For comparison pur-
poses concerning the depth of the penetration, we have used
the same normalization factorw0 = 3.75m s−1 in all four pan-
els, although of course the strength of the pumping should de-
pend on the vortex strength. With α = 0.0465 km−1, upward
Ekman pumping occurs in the region inside r = 3/α ≈ 65
km, with the maximum at r ≈ 15 km. For the weak vor-
tex case (Γ = 256) the corresponding values of the Rossby
depths (second column of Table 2) are so small that the fric-
tionally pumped �uid returns outward in a thin layer below
2 km. In contrast, for the strong vortex case (Γ = 4) the cor-
responding values of the Rossby depths (last column of Table
2) are so large that the frictionally pumped �uid penetrates
to the tropopause. �e smaller Rossby depths associated with
smaller horizontal scales result in a marked smoothing e�ect
as onemoves upward, i.e., only the smooth horizontal compo-
nents of the Ekman pumping reach the upper troposphere. A
consequence of this smoothing e�ect is apparent in the color
contours of the upward mass �ux, which show a maximum at
r ≈ 15 km for z = 1 km, but switches to a maximum at r = 0
at higher levels, with the rapidity of the changeover depend-
ing on the value of Γ. �is e�ect tends to reduce the ability of
Ekman pumping at z = 1 km to determine the eyewall radius.

�ese results have implications for classic parameteriza-
tion schemes (e.g., Ooyama 1969) that relate the activity of
deep convection to the vertical velocity at the top of the
boundary layer. Such schemes do not distinguish between
physical situations with quite di�erent Rossby depths. In
fact, such classic parameterization schemes would seemmore
plausible for strong vortex situations where there is deep ver-
tical penetration of Ekman pumping.

7. Concluding remarks

We have presented three di�erent approaches to the solution
of the transverse circulation equation (2.10), in the special
case when the coe�cients A, B,C are constants. All three ap-
proaches can contribute to our physical understanding of key
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Figure 7. Line contours are isolines of rψ forced solely by Ekman pumping. The sense of the circulation is clockwise. The four panels are
created for zB = 1 km, zT = 5π km, α = 0.0465 km−1 , w0 = 3.75m s−1 , and Γ = 256, 64, 16, 4. Colored contours indicate the vertical pressure
velocity ω, which is related to the log-pressure vertical velocity w and the pseudodensity ρ by ω = −gρw. Warm colors are upward, cool
colors are downward, and the contour interval is 20 hPa hr−1 .

concepts such as Rossby length, Rossby depth, baroclinic eye-
wall tilt, the role of boundary conditions, upward penetration
of Ekman pumping, and dynamical eye size. For example, the
last of these concepts aids in understanding why the strength
of the subsidence �eld in the eye can vary considerably as a
vortex intensi�es (Fig. 3), even if the diabatic heating remains
nearly �xed. To see this, note that, in the (A/C)1/2 = 64 case,
the �rst ten Rossby lengths (third column of Table 1) are all
greater than the eye radius, while in the Γ = (A/C)1/2 = 4
case, the �rst ten Rossby lengths (last column of Table 1) are
all less than the eye radius. In both cases the eye radius is 30
km, but in the case Γ = (A/C)1/2 = 64 this 30 km radius can be
considered dynamically small (measured in Rossby lengths),
while in the (A/C)1/2 = 4 case, this same 30 km eye radius
can be considered dynamically large. Dynamically small eyes
cannot accomodate intense subsidence because the symme-
try condition at r = 0 is “too close", i.e., there is “not enough
room" in the eye. In contrast, dynamically large eyes can ac-
comodate intense subsidence, with expected large dewpoint
depressions. Storms with dynamically large eyes can also pro-

duce eye moats, hub clouds, a warm ring thermal structure,
and an upper level cloud overhang at the outer edge of the eye
(in the bottom panel of Fig. 2, notice the inward-penetrating
cloud overhang at 14 km altitude).

�e results presented here also have implications for un-
derstanding the role of vortex preconditioning before the oc-
currence of rapid development. �e importance of precondi-
tioning is apparent in the work of Nolan (2007), who studied
the development of a tropical cyclone from a weak vortex us-
ing high-resolution, cloud-resolving, nonhydrostatic numer-
ical simulations. He found that, a�er the inner core has be-
come humidi�ed and a mid-level 7 m s−1 vortex has devel-
oped, a smaller scale vortex forms rapidly near the surface.
�is smaller vortex becomes the core of the intensifying trop-
ical cyclone. �e important role of a weak transverse circula-
tion in the rapid development of a small-scale low-level vortex
can be seen as follows. Consider a �uid particle thatmoves ra-
dially inward from radius r1 to radius r2, conserving absolute
angular momentum so that r2v2 + 1

2 f r
2
2 = r1v1 + 1

2 f r
2
1 , where

we assume f = 5 × 10−5 s−1. If r2 = 10 km and v2 = 20 m
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s−1, then r1 = 90 km if the particle is initially at rest (v1 = 0).
However, for the same r2 and v2, we �nd that r1 = 26.4 km if
the azimuthal velocity has the “preconditioned" value v1 = 7
m s−1. For a radial in�ow of 0.25 m s−1, the �rst case re-
quires approximately 89 hr for its 80 km inward shi�, while
the preconditioned case requires only 18 hr for its 16.4 km in-
ward shi�. �us, a vortex with 7 m s−1 lower tropospheric az-
imuthal winds in its inner region is preconditioned for rapid
development if diabatic processes can force a weak (∼ 0.25 m
s−1) radial in�ow in the inner region just above the frictional
boundary layer. �is example reemphasizes the importance
of understanding the underlying dynamical principles asso-
ciated with the derivation and solution of the transverse cir-
culation equation (2.10).
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