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[1] This paper presents high horizontal resolution solutions of an axisymmetric, con-
stant depth, slab boundary layer model designed to simulate the radial inflow and
boundary layer pumping of a hurricane. Shock-like structures of increasing intensity
appear for category 1–5 hurricanes. For example, in the category 3 case, the u @u=@rð Þ
term in the radial equation of motion produces a shock-like structure in the radial
wind, i.e., near the radius of maximum tangential wind the boundary layer radial
inflow decreases from approximately 22 m s21 to zero over a radial distance of a few
kilometers. Associated with this large convergence is a spike in the radial distribution
of boundary layer pumping, with updrafts larger than 22 m s21 at a height of 1000 m.
Based on these model results, it is argued that observed hurricane updrafts of this
magnitude so close to the ocean surface are attributable to the dry dynamics of the
frictional boundary layer rather than moist convective dynamics. The shock-like struc-
ture in the boundary layer radial wind also has important consequences for the evolu-
tion of the tangential wind and the vertical component of vorticity. On the inner side
of the shock the tangential wind tendency is essentially zero, while on the outer side of
the shock the tangential wind tendency is large due to the large radial inflow there.
The result is the development of a U-shaped tangential wind profile and the develop-
ment of a thin region of large vorticity. In many respects, the model solutions resemble
the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).
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1. Introduction

[2] The red curves in Figure 1 show aircraft data from
a low level (434 m average height), southwest to north-
east radial penetration of Hurricane Hugo on 15 Sep-
tember 1989 (see Marks et al. [2008] and Zhang et al.
[2011] for detailed discussions). As the aircraft flew
inward through the lower portion of the eyewall, the
tangential wind increased from 50 m s21 near r 5 22 km
to a maximum of 88 m s21 just inside r 5 10 km. Near
the inner edge of the eyewall there were multiple
updraft-downdraft couplets (the strongest updraft just
exceeding 20 m s21), with associated oscillations of the
radial and tangential velocity components and a very
rapid 60 m s21 change in tangential velocity near 7 km
radius. After ascending in the eye, the aircraft departed
the eye to the northeast (2682 m average height), obtain-
ing the horizontal and vertical velocity data shown by

the blue curves in Figure 1. The extreme horizontal wind
shears and large vertical velocities observed at 434 m in
the southwest sector were not observed at 2682 m in the
northeast sector. Since these extreme structures in the
boundary layer wind field occur under a region of high
radar reflectivity, it is natural to attribute them to moist
convective dynamics. For example, the large updrafts
could be attributed to nonhydrostatic vertical accelera-
tions associated with latent heat release, and the large
potential vorticity at r 5 7 km could be attributed to the
diabatic source term in the potential vorticity equation.
However, the purpose of the present paper is to explore
the possibility that the type of behavior seen in Figure 1
can be explained by nonlinear effects that occur in a sim-
ple dry model of the hurricane boundary layer. In the
following analysis we shall interpret the blue tangential
wind curve in Figure 1 as an inviscid, axisymmetric gra-
dient balanced flow whose associated radial pressure
gradient is also felt in the frictional boundary layer
below. We then interpret the red tangential wind curve
as an axisymmetric frictional boundary layer flow
(driven by the same radial pressure gradient) that is
supergradient inside r � 13 km and subgradient outside
this radius. The subgradient/supergradient nature of the
boundary layer flow is closely related to the magnitude
of the u @u=@rð Þ term in the radial equation of motion.
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We shall also argue that this term is responsible for the
shock-like structure that occurs near r 5 7 km.

[3] As a theoretical basis for the above arguments we
shall use the axisymmetric, primitive equation version
of the slab boundary layer model used in many studies
of the hurricane boundary layer. For further discussion
of the model and its application to many aspects of
tropical cyclone dynamics, the reader is referred to
Ooyama [1969a, 1969b], Anthes [1971], Chow [1971],
Yamasaki [1977], Shapiro [1983], Emanuel [1997], Smith
[2003], Smith and Vogl [2008], Smith and Montgomery
[2008, 2010], Smith et al. [2008], Smith and Thomsen
[2010], and Kepert [2010a, 2010b]. The emphasis here is
on interpreting the observations shown in Figure 1 in
terms of ‘‘Burgers’ shock-like’’ structures that emerge
from the fact that the radial boundary layer equation
contains an embedded Burgers’ equation. An excellent
general mathematical discussion of Burgers’ shock
effects can be found in the book by Whitham [1974],
which includes a review of the original work by Burgers
[1948], Hopf [1950], and Cole [1951].

[4] This paper is organized in the following way. Sec-
tion 2 presents the governing set of partial differential
equations (PDEs) for the slab model. Section 3 dis-
cusses the shock-like structures that appear in the
model solutions. Section 4 gives some reinterpretations
of other low-level aircraft data and of previously pub-
lished nonhydrostatic, moist model simulations. Section
5 contains some concluding remarks on shock-like
structures in more general settings such as translating
vortices.

2. Primitive Equation Slab Boundary Layer
Model

[5] We consider axisymmetric motions of an incom-
pressible fluid on an f-plane. The frictional boundary
layer is assumed to have constant depth h, with radial
and azimuthal velocities u r; tð Þ and v r; tð Þ that are inde-
pendent of height between the top of a thin surface
layer and height h, and with vertical velocity w r; tð Þ at
height h. The horizontal velocity components are

Figure 1. NOAA WP-3D (N42RF) aircraft data from an inbound leg in the southwest quadrant (red, 434 m aver-
age height) and an outbound leg in the northeast quadrant (blue, 2682 m average height) of Hurricane Hugo on 15
September 1989. (top) The solid curves show the tangential wind component, while the dotted curves show the ra-
dial wind component. (bottom) The vertical component of the velocity. These radial profiles are based on 1 s flight
data, which corresponds to a spatial resolution of approximately 100 m. Due to severe boundary layer turbulence
in the eyewall region, there were excursions from the 434 m average height of the inbound leg, with heights of 456,
359, 274, 269, 361, 433, 422, and 396 m for radii of 4.0, 5.0, 6.0, 6.2, 7.0, 8.0, 9.0, and 10.0 km, respectively. This
flight data was obtained from the NOAA Hurricane Research Division of the Atlantic Oceanographic and Meteor-
ological Laboratory.
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discontinuous across the top of the boundary layer. In
the overlying layer, the radial velocity is assumed to be
negligible and the azimuthal velocity vgr rð Þ is assumed
to be in gradient balance and to be constant in time.
The boundary layer flow is driven by the same radial
pressure gradient force that occurs in the overlying
fluid, so that in the radial equation of boundary layer
motion, the pressure gradient force can be expressed as
the specified function f 1vgr =r

� �
vgr . The governing sys-

tem of differential equations for the boundary layer var-
iables u r; tð Þ, v r; tð Þ, and w r; tð Þ then takes the form
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where

U50:78 u21v2
� �1=2

(4)

is the wind speed at 10 m height, which is assumed to be
78% of the mean boundary layer wind speed (as sup-
ported by the dropwindsonde data of Powell et al.
[2003]), and w25 1

2
ðjwj2wÞ is the rectified Ekman suc-

tion. Concerning the dependence of the drag coefficient
cD on wind speed, we use

cD51023

2:70=U10:14210:0764U if U � 25

2:1610:5406 12exp 2 U225ð Þ=7:5½ �f g if U � 25;

�

(5)

where the 10 m wind speed U is expressed in m s21. The
U � 25 m s21 part of equation (5) is based on Large
et al. [1994] and has been constructed to make cD go to
its theoretical infinite value at zero wind speed. The
U � 25 m s21 part of equation (5) is based on Powell
et al. [2003] and Donelan et al. [2004], who argue that cD

reaches a saturation value between 2:531023 and
2:831023 for high wind speeds. A physical explanation
of this saturation effect can be found in Reul et al.
[1999], who experimentally studied the phenomenon of
air flow separation over unsteady breaking waves. The
numerical values of the constants in the U � 25 m s21

part of equation (5) guarantee that cD and its first deriv-
ative are continuous at U 5 25 m s21. A plot of cD ver-

sus U from equation (5) is shown by the red curve in
Figure 2, while a plot of cDU versus U is shown by the
red curve in Figure 3. It should be noted that the high
wind speed behavior of the surface exchange coeffi-
cients for momentum and enthalpy remains one of the
most uncertain aspects of tropical cyclone models. For
further discussion of this uncertainty and its implica-
tions for intensity prediction, see Emanuel [2003], Moon
et al. [2004], Bender et al. [2007], Haus et al. [2010], and
Andreas et al. [2012].

[6] Since equations (1) and (2) may have a somewhat
unfamiliar form, a derivation from first principles is
given in Appendix A. Concerning the boundary condi-
tions for equations (1) and (2), we require that

Figure 2. The drag coefficient cD as a function of the
wind speed at a height of 10 m. The solid red curve is
from the top line of equation (5) and is based on Large
et al. [1994]. The dotted red curve is from the bottom
line of equation (5) and is based on the work of Powell
et al. [2003] and Donelan et al. [2004]. For comparison
the blue curve is cD51023(0.510.06U), which was used
in the tropical cyclone model of Ooyama [1969a].

Figure 3. The red curve displays the drag factor cDU
as a function of U based on formula (5), while the blue
curve shows a similar plot based on the formula
cD51023(0.510.06U) as was used in the tropical
cyclone model of Ooyama [1969a].
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where b is the radius of the outer boundary. The initial
conditions u r; 0ð Þ and v r; 0ð Þ and the forcing vgr rð Þ are
discussed in section 3.

[7] It is interesting to note that the first numerical
model capable of simulating a hurricane life cycle
[Ooyama, 1969a] used highly simplified boundary layer
dynamics. The three-layer model employed the gradient
balance approximation in all three layers, so that the
boundary layer radial wind equation (1) was replaced
by v5vgr and the boundary layer tangential wind equa-
tion (2) was replaced by

hu52
cDjvgr jvgr

f 1fgr

; (7)

where fgr 5@ rvgr

� �
=r@r is the relative vorticity of the

gradient wind. Equation (7) is a local balance that,
when used in equation (3), gives the simple boundary
layer pumping formula:

w5
@

r@r

cDjvgr jrvgr

f 1fgr

� �
: (8)

Because of the neglect of the u @u=@rð Þ term, this
model obviously does not capture Burgers’ shock
effects. Although his model yielded fairly reasonable
numerical simulations of hurricane life cycles,
Ooyama realized that the use of gradient balance in
the calculation of the boundary layer inflow was
probably the weakest assumption in the model. When
the boundary layer radial inflow is strong, the neglect
of the radial advection term u @u=@rð Þ in equation (1)
is not justifiable (see Smith et al. [2008] for an exten-
sive discussion).

[8] In a companion study, Ooyama [1969b] relaxed
the assumption of gradient balance in the boundary
layer in order to produce a more accurate radial distri-
bution of boundary layer pumping. In the improved
model, the boundary layer radial wind equation (1) was
replaced by

u
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and the boundary layer tangential wind equation (2)
was replaced by

u f 1
@ rvð Þ
r@r

� �
52

cDUv1w2 v2vgr

� �
h

; (10)

so now the determination of u, v, and the corresponding
boundary layer pumping w involves the solution of

coupled equations, one of which is a first-order differential
equation involving u @u=@rð Þ and the other of which is a
first-order differential equation involving u f 1@ rvð Þ=r@r½ �.
Ooyama solved this coupled problem by inward numeri-
cal integration using appropriate boundary conditions on
u and v at large radius (1000 km). No boundary condi-
tions were imposed at r 5 0, but u and v were found to
approach zero as r! 0. This improved model has the
ingredients necessary to produce a shock but, because of
the lack of horizontal diffusion, may produce multivalued
solutions in some cases, depending on the numerical meth-
ods used.

[9] When this improved boundary layer model was
incorporated into the complete three-layer hurricane
model, some interesting changes in the hurricane life
cycle were obtained. With the inclusion of the u @u=@rð Þ
term in the boundary layer radial momentum equation,
the peak boundary layer pumping lies on the inside
edge of the eyewall rather than on the outside edge of
the eyewall. This places the diabatic heating closer to
the region of high inertial stability so that the storm’s
maximum wind increases more rapidly and the central
pressure falls more rapidly. These results are consistent
with the notion that intensification depends crucially on
the spatial proximity of the maximum values of inertial
stability and diabatic heating (further discussion is
given by Musgrave et al. [2012, and references therein]).

[10] Although Ooyama [1969b] did not report any
problems with the inward numerical integration proce-
dure, Smith [2003] and Smith and Vogl [2008] have dis-
covered a striking failure of the procedure, which
occurs when the radial wind begins to wildly oscil-
late near the radius of maximum gradient wind.
Similar difficulties have been described by Kepert
[2010a, 2010b]. Such difficulties are associated with
the tendency of these equations to produce a Bur-
gers’ shock in the u field. In the absence of horizon-
tal diffusion or some type of shock fitting
procedure, the inward radial integration procedure
generally fails. For this reason, we have included in
the boundary layer equations (1) and (2) both time
dependence and horizontal diffusion, so that the
problem can be treated as a well-posed initial value
problem describing the time-dependent approach to
a steady-state solution with a Burgers’ shock.

[11] Before proceeding to the discussion of model
results, it is worthwhile to note that the boundary
layer model domain does not constitute an energeti-
cally closed domain. The kinetic energy principle
associated with the slab boundary layer model (1)–
(6) is obtained by multiplying equation (1) by u and
equation (2) by v and then adding the resulting
equations to obtain
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where d5@ ruð Þ=r@r is the divergence and f5@ rvð Þ=r@r is
the relative vorticity. Integrating equation (11) over the
entire area and using the boundary conditions (6), we
obtain

dK
dt

5F1G2D; (12)

where the kinetic energy K, the flux F , the generation
G, and the dissipation D are given by
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[12] To summarize, the total kinetic energy of the
boundary layer changes in time due to vertical and lat-
eral fluxes at the top and outer boundaries (F ), the gen-
eration of kinetic energy by inward radial flow down
the pressure gradient (G), and the dissipation due to sur-
face drag and lateral diffusion (D). Numerical experi-
ence shows that the quasi-steady-state hurricane
boundary layer is characterized by an approximate bal-
ance between the G term and the surface drag part of
the D term. Thus, although the lateral diffusion terms
in equations (1) and (2) will turn out to be important
near the Burgers’ shock, they play a minor role in the
overall boundary layer energetics.

3. Model Results

[13] The problem (1)–(6) has been solved using cen-
tered, second-order, spatial finite difference methods on
the domain 0 � r � 1000 km with a uniform radial grid
spacing of 100 m and a fourth-order Runge-Kutta time
differencing scheme with a time step of 1 s. To illustrate
how the radial flow u r; tð Þ, the tangential flow v r; tð Þ,
and the boundary layer pumping w r; tð Þ evolve into a
steady state, the initial conditions have been chosen to
be u r; 0ð Þ50 and v r; 0ð Þ5vgr rð Þ, and the constants have
been chosen as h 5 1 km, f 55:031025 s21, and
K 5 1500 m2 s21. The choice of K is discussed further in
Appendix B. The forcing vgr rð Þ is specified through its
associated vorticity fgr rð Þ5d rvgr rð Þ


 �
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where r1; r2; r3; r4; f0; and f1 are specified constants, and
S sð Þ5123s212s3 is an interpolating function satisfying
S 0ð Þ51;S 1ð Þ50; and S0 0ð Þ5S0 1ð Þ50. Figures 4 and 5
show fgr rð Þ and vgr rð Þ profiles for the three vortices
with the parameter values listed in Table 1. The maxi-
mum values of the gradient wind vgr rð Þ for the category
1, 3, and 5 cases are 37.5, 55, and 75 m s21, respectively.
For each case the radial derivative of fgr rð Þ has both
signs, so the Rayleigh necessary condition for baro-
tropic instability is satisfied. However, in each case, the
width of the annular region of high vorticity is larger
than the radius of the region of low central vorticity
(i.e., these are thick annular rings). A detailed linear

Figure 4. Radial profiles of fgr rð Þ for the category 1, 3,
and 5 cases having the parameter values listed in Table 1.

Figure 5. Radial profiles of vgr rð Þ for the category 1, 3,
and 5 cases having the parameter values listed in Table 1.
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analysis [Schubert et al., 1999, Figures 1 and 2] and nu-
merical experiments with a nonlinear model [Hendricks
et al., 2009, Figure 5] show that such thick rings are
exponentially stable.

[14] Figure 6 shows the time evolution of the bound-
ary layer flow beneath the category 3 vortex. The four
plots of Figure 6 show radial profiles (0 � r � 40 km)
of the boundary layer radial wind u, tangential wind v,

vertical velocity w, and relative vorticity f, with the five
curves in each plot for times 0, 0.5, 1.0, 2.0, and 3.0 h.
The initial boundary layer flow (dashed curves) has
u 5 0 and v equal to the gradient wind. Note that strong
radial inflow, supergradient/subgradient tangential
winds, large boundary layer pumping, and large relative
vorticity quickly develop, with the establishment of a
near steady state by 2 or 3 h. Due to the u @u=@rð Þ term
in the radial equation of motion, a shock-like structure
develops a few kilometers inside the radius of maximum
gradient wind. The maximum radial inflow is approxi-
mately 22 m s21. Near the shock radius this radial
inflow decreases inward to zero over a narrow radial
interval, thereby producing an intense, narrow spike in
the boundary layer pumping.

[15] The category 1 and 5 vortices also quickly evolve
into a near steady state, with small changes after 2 or 3
h. For comparison, Figure 7 shows u, v, w, and f for
t 5 0 and t 5 3 h for each category vortex. An interest-
ing feature of the radial profiles of w r; tð Þ is the very
sharp gradient on the inner side and the relatively
slower decrease on the outer side of the maximum.
Through the mass continuity equation (3), this behavior
of w r; tð Þ is related to the shock-like structure of u r; tð Þ.
To a certain extent the radial structure of w r; tð Þ in the
slab model agrees with the observed radial structure of
the red curve in the lower plot of Figure 1, which also
shows a weaker gradient on the outside edge of the
maximum. Another interesting feature of the category 3
and 5 cases is the rather large boundary layer pumping
that the slab model produces, when compared with the

Table 1. Initial Condition Parameters for Vortices in Figures

4 and 5a

Case r1 (km) r2 (km) r3 (km) r4 (km)
f0

(31023 s21)
f1

(31023 s21)

C1 7 11 18 30.5 2.5 3.5
C3 5 8 13 20.5 5.0 7.5
C5 4 6 9 15 8.0 15.0

aNumerical values of the gradient wind parameters r1,r2,r3,r4,f0, and
f1 for the category 1, 3, and 5 vortices.

Figure 6. Slab boundary layer model results for the
category 3 forcing case. The four plots show the bound-
ary layer radial velocity u(r,t), tangential velocity v(r,t),
vertical velocity w(r,t), and relative vorticity f(r,t) for
the inner region 0�r�40 km. The results at the five dif-
ferent times t50,0.5,1.0,2.0, and 3.0 h are indicated by
the color coding. Initially, u50,v5vgr,w50, and f5fgr.
Radial inflow velocities exceeding 21 m s21 quickly de-
velop, and shock-like structures form in the region
13�r�15 km, leading to vertical velocities exceeding
22 m s21. A near steady state is reached within 2 or 3 h,
with the boundary layer tangential wind becoming
supergradient in the region 12<r<16 km and subgra-
dient in the region r>16 km.

Figure 7. Steady-state (i.e., t 5 3 h) slab boundary
layer model results for the C1, C3, and C5 forcing
cases.
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observations of Figure 1. Some of this discrepancy is
probably due to the simplicity of the slab model and the
chosen value of K, but some may be explained by the
low elevation of the flight level for the red curve in the
lower plot of Figure 1, i.e., there may have been radially
convergent flow above flight level so that a larger w might
have been measured if the aircraft had flown several hun-
dred meters higher. In actual hurricanes, this shock effect
makes the inner core boundary layer a dangerous place
for research aircraft. The location of shock formation
also plays a crucial role in determining the eyewall radius,
and hence where the diabatic heating will occur, relative
to the region of high inertial stability.

[16] One of the important assumptions in the formu-
lation of the slab boundary layer model (1)–(6) is that h
is a constant. To assess the consequences of different
choices of this constant, we have run the slab model
with case C3 forcing for the five choices h5500;
750; 1000; 1250; and 1500m: The resulting ‘‘steady-
state’’ (i.e., t 5 3 h) radial profiles of u; v;w; and f are
shown in Figure 8. The deepest boundary layer
(h 5 1500 m) produces a maximum inflow of 18 m s21,
shock-like features at r � 14 km, and a maximum
boundary layer pumping (i.e., w at z 5 1500 m) of 27.5
m s21, while the shallowest boundary layer (h 5 500 m)
produces a maximum inflow of 29 m s21, shock-like
features at r � 11:5 km, and a maximum boundary

layer pumping (i.e., w at z 5 500 m) of 15 m s21. In
boundary layer models that have high resolution in
both the vertical and radial directions, the boundary
layer depth becomes shallower in the vortex core where
the inertial stability is larger [Kepert, 2001]. Thus, while
the constant depth slab model can serve as a basis for
qualitative and semiquantitative understanding, accu-
rate simulation of the shock location and structure is
best obtained with more general models that include
high vertical and horizontal resolution.

[17] We can also obtain a Lagrangian interpretation
of the model results by writing the original equations
(1) and (2) in the form

du
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52
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1cDUrv
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1Kr
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@r
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r@r
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;

(16)

where d=dtð Þ5ð@=@tÞ1u @=@rð Þ is the derivative follow-
ing the boundary layer radial motion, i.e., the derivative
along lines defined by

dr

dt
5u: (17)

In regions where w � 0, the w2 terms in equations (15)
and (16) vanish, and the lines defined by equation (17)
are the characteristics of the hyperbolic system that
results from the neglect of the horizontal diffusion
terms in equations (15) and (16). However, in regions
where w2 does not vanish, these w2 terms need to be
expressed in terms of ð@u=@rÞ1ðu=rÞ, and then the
@u=@r parts need to be brought over to the left-hand
sides of equations (15) and (16), thereby making the cal-
culation of characteristics somewhat more involved and
leading to the presence of another set of characteristics,
in addition to those obtained from equation (17). For
simplicity, the present discussion is limited to trajecto-
ries, as defined by equation (17), rather than a full anal-
ysis of both sets of characteristics.

[18] The trajectories in the (r,t)-plane were computed
by numerical integration of equation (17) using the
same 1 s time step used for the numerical solution of
equations (1) and (2). These trajectories are shown for
the forcing case C3 in the three plots of Figure 9, along
with isolines of the radial velocity u (top), the tangential
velocity v (middle), and the absolute angular momen-
tum m5rv1 1

2
fr2 (bottom). A blowup of these trajecto-

ries, for the region 10 � r � 20 km, is shown in Figure
10, along with isolines of the boundary layer pumping
w (top) and the relative vorticity f (bottom). Since u 5 0
initially, all the trajectory curves are vertical in the (r,t)-
plane at t 5 0. Since the radial flow inside r � 13 km
remains weak, all the trajectory curves remain nearly

Figure 8. Steady-state (i.e., t 5 3 h) slab boundary layer
model results for the C3 forcing case with the five different
assumed boundary layer depths h5500,750,1000,1250,
and 1500 m. The third plot shows the radial profile of
w52h @ ruð Þ=r@r½ � at z 5 h, so that even though the
h 5 500 m case has the strongest inflow, it has the weakest
vertical velocity at z 5 h.
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vertical inside this radius. Outside r � 15 km the trajec-
tories quickly turn inward as a near steady state is
established by t 5 2 h. By t50:5 h the inward turning
trajectories have established a shock-like structure at
r 5 15 km. This structure moves slowly inward to r 5 13
km during the interval 0:5 � t � 3 h.

[19] To interpret Figure 9 in terms of equations (15)
and (16), we first note that the horizontal diffusion
terms on the right-hand sides are small except near the
shock. The first term on the right-hand side of equation
(15) always damps u since w21cDUð Þ=h > 0. The sec-
ond term on the right-hand side of equation (15) tends
to be negative in outer regions where the boundary
layer flow is subgradient (v2vgr < 0) and to be positive
in inner regions where the boundary layer flow is super-
gradient (v2vgr > 0). Thus, in the subgradient region,
the effect of the second term is to make ðdu=dtÞ < 0,
i.e., to make an inflowing parcel flow inward even
faster. In the supergradient region, the effect of the sec-
ond term is to make ðdu=dtÞ > 0, i.e., to make an
inflowing parcel slow down. However, it should be
emphasized that although the f 1 v1vgr

� �
=r


 �
v2vgr

� �
term can play a role in decelerating the inflow, the forma-
tion of a shock-like structure in u is primarily due to the
Burgers’ shock term u @u=@rð Þ, which is associated with
intersecting characteristics and nearly discontinuous
behavior in u. Similarly, as seen in the bottom plot of Fig-
ure 9, the first term on the right-hand side of equation
(16) tends to damp the absolute angular momentum

m5rv1 1
2

fr2 along each trajectory. However, as shown in
the middle plot of Figure 9, the behavior of v is quite dif-
ferent, showing a rapid increase on most of each inflowing
trajectory. One way of understanding the simultaneous
decrease in m and increase in v along an inflowing bound-
ary layer trajectory is through the relation

r
dv

dt
5

dm

dt
2 f 1

v

r

� �
ru: (18)

Along inflowing trajectories in Figure 9, the
2 f 1ðv=rÞ½ �ru term is positive and typically five times as
large as jdm=dtj, which means that ðdv=dtÞ > 0 even
though ðdm=dtÞ < 0. The process is somewhat analo-
gous to spinning ice skaters who are losing angular mo-
mentum through friction with the ice surface but still
manage to spin faster by bringing in their arms at a rate
that more than compensates for the frictional loss. In a
hurricane, it is this process that allows the strongest tan-
gential winds to occur in the frictional boundary layer.
This view is consistent with that of Smith et al. [2009],
who have emphasized the important role of gradient
wind imbalance in the tropical cyclone boundary layer.

[20] The slab boundary layer model solutions shown
in Figures 6–10 have a relatively smooth character
because equations (1)–(6) constitute a filtered model in
the sense that the pressure field is fixed, so there is no
mutual adjustment of the pressure and wind fields
through inertia-gravity wave radiation. In a more gen-
eral model with such mutual pressure-wind adjustment,
the fields would have a less-smooth character, more like
the observed fields in Figure 1.

Figure 9. Trajectory curves in the (r,t)-plane for forc-
ing case C3 are shown in the three plots, along with iso-
lines of (top) the radial velocity u, (middle) the
tangential velocity v, and (bottom) the absolute angular
momentum m5rv1 1

2
fr2. Note the development of the

shock-like structure in the interval 13�r�15 km.

Figure 10. Trajectory curves in the (r,t)-plane for forc-
ing case C3 are shown in the two plots, along with iso-
lines of (top) the vertical velocity w and (bottom) the
relative vorticity f. Note that this is a blowup (10�r�20
km) of the shock-like region shown in Figure 9.
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[21] With such strong boundary layer pumping, we
would expect that the formation of a hurricane boundary
layer shock could be dramatically imprinted on the ra-
dial structure of the equivalent potential temperature
field above the boundary layer. An example from the
700 hPa flight-level data in Hurricane Rita (1937 UTC
on 21 September 2005) was given by Sitkowski et al.
[2012] as their Figure 3. With tangential winds of 75–80
m s21, a boundary layer shock had apparently formed in
the lowest kilometer, with an intense spike in the bound-
ary layer pumping just inside the radius of maximum
wind. The high he air pumped out of the boundary layer
was imprinted on the radial profile of he at 700 hPa, with
localized he anomalies of approximately 20 K near the
radius of the boundary layer shock.

[22] Eliassen and Lystad [1977] developed a filtered
theory of the turbulent boundary layer under a circular
vortex. Their model filters toroidal inertia oscillations
by neglecting the material derivative of u in the radial
equation of motion. Since their approximation involves
the neglect of the u @u=@rð Þ term, the Burgers’ shock
effect is eliminated. However, their model still produces
strong boundary layer pumping that maximizes away
from the vortex axis. We have considered an approxi-
mation of the slab model (1)–(6) that has a certain simi-
larity to the Eliassen-Lystad model. The approximate
slab model consists of equations (1)–(6), but with the
u @u=@rð Þ term neglected in equation (1). The results of
this approximate model have then been compared with
the results of the unapproximated slab model. In gen-
eral, the two models produce similar results except near
the radius of maximum gradient wind, where they pro-
duce quite different fields. Although the approximate
model can produce a rapid change in the radial velocity
and a fairly strong updraft, this is not the same as the
Burgers’ shock effect, leading to the extreme behavior
shown in the unapproximated model. When the
u @u=@rð Þ term is included, it becomes an important part
of the radial momentum balance. Then, in the quasi-
steady-state near the radius of maximum gradient wind,
the primary balance in equation (1) is between the
u @u=@rð Þ term and the f 1 v1vgr

� �
=r


 �
v2vgr

� �
term, so

that v2vgr changes sign at essentially the same radius
where @u=@r changes sign. Although it provides a reasona-
ble approximation away from the radius of maximum gra-
dient wind, the approximate model does not provide a self-
consistent approximation for all radii. The approximate so-
lution is defective in the sense that it implies large values of
the u @u=@rð Þ term even though this term is neglected in the
calculation. Thus, the inclusion of the u @u=@rð Þ term is cru-
cial for the accurate simulation of the location, shape, and
strength of the boundary layer pumping.

4. Reinterpretation of Previous Observational and
Modeling Studies

[23] The slab boundary layer model results presented
here can serve as the basis for reinterpretation of many
observational and modeling studies of tropical cyclones.
For example, the observational study of Barnes and
Powell [1995] can be reinterpreted as presenting evi-

dence that boundary layer shocks can form at large
radii, as when secondary eyewalls form. Their Hurri-
cane Gilbert (1988) observations are reproduced here as
Figures 11 and 12. Figure 11 shows the radar reflectiv-
ity of Gilbert at 1731 UTC, 12 September 1988, as the
eye was making landfall on Jamaica. An outer band,
located approximately 175 km southeast of the cyclone
center, was repeatedly sampled by NOAA WP-3D air-
craft flying 19 passes normal to the band at a variety of
levels below approximately 1500 m. Storm-relative ra-
dial velocity and vertical velocity from one of these
passes, taken at z 5 720 m between 1722:00 and 1731:10
UTC near the thick line in Figure 11, are shown in the
top and middle plots of Figure 12. Outside r 5 170 km
the storm-relative radial velocity is inward at approxi-
mately 15 m s21, but it rapidly decreases to nearly zero
over a few kilometers radial distance. This strong con-
vergence is associated with an updraft that exceeds 6
m s21 at z 5 720 m. Based on the 19 radial passes
through the band, Barnes and Powell [1995] also con-
structed the composite radius-height cross section
shown in the bottom plot of Figure 12. Note that the
shock-like structure in the relative radial wind is most
extreme near the surface but extends upward to 1500 m.
For other examples of shock-like behavior in outer
bands, the reader is referred to the observational studies
of Barnes et al. [1983] and Powell [1990a, 1990b]. The
wind structure shown in these studies is consistent with
the notion that boundary layer shock-like structures
can form at large radii and that they can be the primary
control on the location and strength of the deep convec-
tion in secondary eyewalls and outer bands.

Figure 11. NOAA WP-3D lower fuselage radar reflec-
tivity (dBZ) for Hurricane Gilbert at 1731 UTC, 12 Sep-
tember 1988, when its eye was making landfall on
Jamaica. Nineteen boundary layer flight legs (see Figure
12) were made normal to the band located approximately
175 km southeast of the storm center. Reproduced from
Figure 2 of Barnes and Powell [1995], ©American Mete-
orological Society, and used with permission.
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[24] It is also possible to reinterpret the results of nu-
merical simulations of tropical cyclones with axisym-
metric, nonhydrostatic, moist models. Such
simulations were pioneered by Yamasaki [1977, 1983]
and refined by Willoughby et al. [1984], Nasuno and
Yamasaki [1997], Hausman et al. [2006], and Mrowiec
et al. [2011]. These studies generally used horizontal
and vertical grid spacing of approximately 500 m so
that the simulations were ‘‘cloud-resolving’’ and did
not involve parameterization of cumulus convection. A
summary of one such numerical integration [Yamasaki,
1983] is reproduced here as Figures 13 and 14, which
are time-radius sections of the surface rainfall intensity
and the tangential wind at z50:9 km. Initially, the
model atmosphere is at rest, with nine warm bubbles
at low levels inside r 5 80 km. During the first 80 h,
the edge of the rainy area expands outward to r 5 220

km, while the tangential wind slowly increases from
zero to approximately 9 m s21. During the next 55 h,
the edge of the rainy area contracts, with hurricane
force tangential winds being produced at 134 h. There-
after, rain in the core is suppressed and a quasi-steady
eye-eyewall structure is established. By 144 h, what
appears to be a strong boundary layer shock has
formed, and the tangential wind has accelerated to
approximately 80 m s21. The boundary layer shock-
like structure at 144 h is clearly depicted in Figure 15,
which shows a 50 m s21 radial inflow decelerated to
rest in the region 15 � r � 20 km. Similar behavior
occurs in the axisymmetric, nonhydrostatic simulations
of Hausman et al. [2006, Figure 8] and Mrowiec et al.
[2011, Figure 4b], both done with 500 m radial resolu-
tion in the inner core. For example, the simulations of
Hausman et al. [2006] show the development of a 30 m
s21 near-surface radial inflow that decreases to zero
over a radial interval of approximately 5 km, produc-
ing a narrow zone of 12 m s21 boundary layer pump-
ing near r 5 10 km. This boundary layer pumping
appears to control the location of the eyewall latent
heat release through the entire troposphere, which
results in a narrow vertical tower of high vorticity
[Hausman et al., 2006, Figure 10].

[25] Another interesting study, designed to clarify the
role of surface friction in tropical cyclones, was per-
formed by Yamasaki [1977], who ran the following
three axisymmetric, nonhydrostatic model experiments:
in case 1 the drag coefficient was held constant at
2:531023; in case 2 the drag coefficient was set to zero;
in case 3 the drag coefficient was zero for the first 24 h,
was then linearly increased to 2:531023 over the period
from 24 to 36 h, and was subsequently held fixed at this
value. These experiments are summarized in Figure 16,
which shows the eye radius (dashed lines) and the outer
radius of the convective area (solid lines). In case 1, an
eye-eyewall structure develops, with the eyewall in the
annular region 2 � r � 15 km. In case 2, an eye-eyewall
structure does not develop. In case 3, as the drag coeffi-
cient is increased, the storm transitions into a structure
similar to case 1, with the eyewall in the annular region
8 � r � 22 km. A cross section of the radial velocity,
averaged from 36 to 48 h for case 2, is shown in the bot-
tom plot of Figure 17. At this stage the maximum tan-
gential wind is approximately 14 m s21, and there is
weak radial inflow of 1–2 m s21 over the lower half of
the troposphere. In contrast, a cross section of the ra-
dial velocity, averaged from 60 to 72 h for case 3, is
shown in the top plot of Figure 17. In this case, the
maximum tangential wind is approximately 40 m s21,
and there is strong radial inflow (�20 m s21) in the
boundary layer, with a shock-like structure having
formed just outside 10 km radius. These modeling
results are consistent with the idea that eye-eyewall
structure is intimately related to the formation of a
boundary layer shock-like structure in the radial
velocity.

[26] In recent years, remarkable progress has been
made in the numerical simulation of secondary eyewall
formation and concentric eyewall cycles using 3-D

Figure 12. (top) Relative radial velocity and (middle)
vertical velocity as measured by one of the NOAA WP-
3D aircraft at z 5 720 m from 1722:00 to 1731:10 UTC
along the bold line in Figure 11. A boundary layer
shock in the radial flow has developed at a radius of
approximately 170 km, with an associated vertical ve-
locity exceeding 6 m s21. (bottom) A composite radius-
height cross section of the relative radial velocity, based
on 19 flight legs normal to the band. Adapted from
Figures 5a, 5c, and 6 of Barnes and Powell [1995],
©American Meteorological Society, and used with
permission.
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Figure 13. Time-radius section of surface rainfall intensity (isolines are for 1, 5, 10, and 20 mm/10 min) for a nu-
merical experiment performed by Yamasaki [1983] using an axisymmetric nonhydrostatic model. The eye-eyewall
structure emerges at approximately 140 h, with the rainfall gradient on the inner edge of the eyewall being so
strong that the four isohyets are indistinguishable. Reproduced from Figure 1 of Yamasaki [1983], and used with
permission.

Figure 14. Time-radius section of the tangential wind (m s21) at z50.9 km for the same numerical experiment
shown in Figure 13, as performed by Yamasaki [1983]. Note the variable contour interval. Hurricane force tangen-
tial winds occur at t 5 134 h, after more than 24 h of contraction. During the next 10 h the classic eye-eyewall struc-
ture emerges, and the vortex rapidly intensifies to 80 m s21. Reproduced from Figure 2 of Yamasaki [1983], and
used with permission.
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models [Houze et al., 2007; Terwey and Montgomery,
2008; Wang, 2008, 2009; Zhou and Wang, 2009; Judt
and Chen, 2010; Abarca and Corbosiero, 2011; Martinez
et al., 2011; Zhou and Wang, 2011; Rozoff et al., 2012;
Wu et al., 2012; Huang et al., 2012; Menelaou et al.,
2012; Lee and Chen, 2012; Chen and Zhang, 2013].
These simulations, although obviously at much larger
horizontal grid spacings than the present axisymmetric
slab model, can be interpreted as demonstrating the im-
portance of the boundary layer shock phenomenon. For
example, one illuminating simulation by Rozoff et al.
[2012, Figure 2d] shows that the destruction of the inner
eyewall is closely associated with the development of a
secondary eyewall shock-like structure at larger radius.
Simulations such as theirs are supportive of the notion
that the fundamental interaction between concentric eye-
walls occurs through the boundary layer and takes the

Figure 15. Vertical cross section of radial velocity
(m s21) at 144 h, soon after the classic eye-eyewall struc-
ture has emerged in the axisymmetric numerical model
of Yamasaki [1983]. A strong boundary layer shock has
formed just outside r 5 15 km, with an associated verti-
cal velocity (not shown) of 12 m s21 at z51.5 km.
Adapted from Figure 8a of Yamasaki [1983] and used
with permission.

Figure 16. Eye radius (dashed lines) and outer radius
of the convective area (solid lines) for three numerical
experiments performed by Yamasaki [1977] using an
axisymmetric, nonhydrostatic hurricane model. Case 1
(cD52.531023) develops an eye-eyewall structure, with
the eyewall in the annular region 2�r�15 km. Case 2
(cD50) does not develop an eye-eyewall structure. After
cD is increased from zero to 2.531023 between 24 and
36 h, case 3 also develops an eye-eyewall structure, with
the eyewall in the annular region 8�r�22 km. Adapted
from Figure 2 of Yamasaki [1977] and used with
permission.

Figure 17. (bottom) Vertical cross section of radial ve-
locity, averaged from 36 to 48 h, for Yamasaki’s case 2.
Since case 2 has cD50, there is no concentrated bound-
ary layer inflow, but rather a weak inflow of 1–2 m s21

in the lower half of the troposphere due to diabatic
processes. (top) A similar cross section (but note the dif-
ferent horizontal scale) for Yamasaki’s case 3, averaged
from 60 to 72 h. In case 3 a boundary layer shock in the
radial flow has developed just outside a radius of
approximately 10 km, with an associated vertical veloc-
ity (not shown) exceeding 6 m s21 at a height of 1 km.
Adapted from Figures 5b and 8b of Yamasaki [1977]
and used with permission.
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form of a control and an ultimate destruction of the
inner eyewall by the outer eyewall boundary layer shock.

5. Concluding Remarks

[27] The structure of the boundary layer wind field in
Hurricane Hugo (1989) has been interpreted in terms of
an axisymmetric slab boundary layer model. The 20
m s21 vertical velocity in the boundary layer of Hugo has
been explained by dry dynamics, i.e., by the formation of
a shock in the boundary layer radial inflow, with very
small radial flow on the inside edge of the shock and
large radial inflow on the outside edge of the shock.
Shock formation is associated with the u @u=@rð Þ term in
the radial momentum equation. Since u is an order of
magnitude larger in the boundary layer than in the over-
lying fluid (approximately 20 m s21 versus 2 m s21),
shocks are primarily a phenomenon of the boundary
layer. The development of a shock in the boundary layer
radial wind u leads to a shock in the boundary layer tan-
gential wind v since @v=@t52 f 1fð Þu1 � � �, with large
inflow (u < 0) producing large @v=@t on the outside edge
of the shock. A thin sheet of very high vorticity develops
in the boundary layer, and it may extend upward due to
vertical advection. Horizontal diffusion has been used
here to avoid multivalued solutions near the shock.
Although horizontal diffusion is a simple and effective
way to avoid this problem, it is not the only way. Two
alternatives are shock-tracking methods, in which the
governing PDEs are supplemented by jump conditions
across discontinuities, or shock-capturing methods such
as those used in the Fortran routines of the Conservation
Law Package (CLAWPACK) described by Leveque
[2002].

[28] For the boundary layer structures simulated
here, we have chosen to use the terms ‘‘boundary layer
shock’’ or ‘‘Burgers’ shock,’’ rather than the terms
‘‘bore’’ or ‘‘front.’’ Our assumption of constant h obvi-
ously precludes the development of jumps in the bound-
ary layer depth, so use of the term ‘‘bore’’ would be
confusing. In addition, we have chosen to reserve the
term ‘‘front’’ for structures that arise not from u @u=@rð Þ,
but rather from the combination of u @v=@rð Þ;w @v=@zð Þ,
u @h=@rð Þ, and w @h=@zð Þ, with the rotational flow v and
the potential temperature h being related by the gradi-
ent form of thermal wind balance. However, it should
be noted that this distinction is not completely sharp,
since the ‘‘boundary layer shocks’’ studied here depend
not only on the u @u=@rð Þ term in the radial equation of
motion but also on the u @v=@rð Þ term (or more gener-
ally on the f 1fð Þu term) in the tangential equation of
motion, which leads to the shock-like structure in the v
field. Even with this caveat, it is helpful to use terminol-
ogy that distinguishes features that can be accurately
modeled using the gradient balance assumption (i.e.,
fronts) from features that cannot be modeled using gra-
dient balance (i.e., boundary layer shocks).

[29] For an axisymmetric, nontranslating pressure
field, the boundary layer shock is circular. If the pres-
sure field translates, the shock becomes asymmetric.
The low azimuthal wave number aspects of this prob-

lem were studied by Shapiro [1983]. It would be interest-
ing to repeat his numerical experiments at much higher
azimuthal resolution in order to more accurately simu-
late the dynamics of asymmetric shocks. Such simula-
tions, using a different numerical model, have recently
been described by Williams [2012].

[30] The slab boundary layer model described in sec-
tion 2 can be regarded as a model that is at or near the
bottom of a hierarchy of boundary layer models of
increasing complexity. As discussed by Kepert [2010a,
2010b], the constant depth slab model does not capture
certain important features found in height-resolving
models [Montgomery et al., 2001; Kepert, 2001; Kepert
and Wang, 2001] of the tropical cyclone boundary layer,
e.g., the shallow boundary layer depth found near the
cyclone core and the outward radial flow just above the
boundary layer. However, the constant depth slab
model does appear to capture the essence of the shock
structure in the radial inflow and its consequences for
boundary layer pumping and subgradient/supergradient
behavior in the tangential wind.

[31] The phenomenon of boundary layer shocks puts
demanding horizontal resolution requirements on 3-D
full-physics tropical cyclone models. These horizontal
resolution requirements are as strict or even stricter
than those for accurate simulation of moist convection.
For nested models, these requirements extend outward
at least as far as typical radii for the formation of sec-
ondary eyewalls and outer spiral bands. In view of the
importance of boundary layer shocks in determining
the location of diabatic heating, accurate intensity fore-
casts probably require accurate simulations of such
fine-scale aspects of the boundary layer.

[32] Finally, we reiterate the conclusion that a bound-
ary layer shock is one of the essential ingredients of a
hurricane vortex with a well-defined eyewall updraft
structure. In fact, it could be said that the formation of
a boundary layer shock is one of the most significant
events in the life cycle of a hurricane, for it imposes on
the storm a classic eye-eyewall structure.

Appendix A: Derivation of the Boundary Layer
Equations

[33] The logical starting point in the derivation of
equation (2) is the conservation relation for the absolute
angular momentum m5rv1 1

2
fr2. This conservation

relation can be written in the flux form:

@ hmð Þ
@t

1
@ ruhmð Þ

r@r
1mw12mgr w2

1cDUrv5
@

r@r
hKr3 @

@r

v

r
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;

(A1)

where w15 1
2
ðjwj1wÞ is the rectified boundary layer

pumping, and w25 1
2
ðjwj2wÞ is the rectified boundary

layer suction. According to equation (A1), there are five
processes that can cause local time changes in the
boundary layer absolute angular momentum: (i) radial
divergence of the radial advective flux; (ii) upward flux
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of m when w > 0, in which case w15jwj and w250; (iii)
downward flux of mgr when w < 0, in which case w150
and w25jwj; (iv) loss of m through surface drag; and
(v) radial divergence of the radial diffusive flux. To con-
vert equation (A1) into a more convenient form, we dif-
ferentiate the second term as a product of ruh and m
and then make use of the continuity equation (3) to
obtain equation (2).

[34] The derivation of the radial momentum equation
(1) proceeds in a similar fashion. The flux form is

@ huð Þ
@t

1
@ ruhuð Þ

r@r
1uw12h f 1

v

r
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h

q
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1cDUu5
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r2@r
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@r

u

r
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:

(A2)

Note that we have assumed the radial flow in the region
above the boundary layer is very small, so that equation
(A2) does not contain a term analogous to the mgr w2

term in equation (A1). The radial pressure gradient
force in the boundary layer is now assumed to be equal
to the radial pressure gradient force in the region above
the boundary layer, where gradient balance exists.
Thus, we can write

f 1
vgr

r

� �
vgr 5

1

q
@p

@r
; (A3)

where the gradient wind vgr rð Þ is a specified function.
To convert equation (A2) into a more convenient form,
we differentiate the second term as a product of ruh and
u and then make use of the continuity equation (3) and
the relation (A3) to obtain equation (1).

Appendix B: Horizontal Diffusivity

[35] The Courant-Friedrichs-Lewy condition associ-
ated with the horizontal diffusion terms sets the stabil-
ity constraint KDt= Drð Þ2�2=3, so that for Dr5100 m
and Dt51 s, we must have K�6666 m2 s21. In order to
determine an appropriate value of K, a series of numeri-
cal experiments were performed using Dr5100 m, Dt51
s, and K5500; 1000; 1500; 2000; and 2500 m2 s21. The
results of these experiments (Figure 18) show that the
steady-state (i.e., t 5 3 h) radial profiles of u, v, w, and f
are nearly identical, except near the shock, for these five
values of K. As K decreases, there is a sharpening of the
shock-like structure of u and v and an upward extension
of the singular-like structure of w and f. This behavior
is consistent with the idea that with infinitesimally small
Dr and Dt, the limit K ! 0 leads to discontinuities in u
and v and singularities in w and f. However, it should
be noted that with finite, fixed values of Dr and Dt, the
use of smaller and smaller values of K can result in
unphysical spatial oscillations of the fields, i.e., the hori-
zontal diffusion is not strong enough to regularize the
solution, leading to oscillations of the type discovered
by Smith [2003] and Smith and Vogl [2008]. Based on
this numerical experience, we have chosen K 5 1500
m2 s21 in all the experiments discussed in section 3.

Since the purpose of the horizontal diffusion terms in
the model is primarily to provide a degree of regularity
to the numerical solution, there is no reason to consider
a larger value of K. A slightly smaller value could have
been chosen, but this would only have made the shock-
like structure even more striking in the model results. In
passing, we note that the value K 5 1500 m2 s21 is con-
sistent with the observational findings of Zhang and
Montgomery [2012] for the boundary layer in the eye-
wall region of intense hurricanes.
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